RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [BATCH 2016-19] B.A./B.Sc. FOURTH SEMESTER (January – June) 2018 Mid-Semester Examination, March 2018

Date : 16/03/2018 Time : 1 pm - 2 pm MATH FOR IND. CHEMISTRY (General)

pm

Paper : IV

Full Marks : 25

[Use a separate Answer Book <u>for each group</u>]

<u>Group – A</u>

(Answer <u>any two</u> questions) [2×5]

- 1. Using the operator theory, prove that (i) $E \equiv 1 + \Delta$ and (ii) $(1 + \Delta)(1 \nabla) \equiv 1$, where E is the shift operator, Δ and ∇ are the forward and backward difference operators, respectively.
- 2. Using the following table, calculate the difference table and interpolate at x = 0.35, correct upto 2 decimal places.

Х	0.1	0.2	0.3	0.4	0.5
У	1.40	1.56	1.76	2.00	2.28

3. Find the whole area of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ bounded by its base.

<u>Group – B</u>

Answer <u>any two</u> questions from <u>Question Nos. 4 to 6</u> :

4. Solve the differential equations :

a)
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0.$$
 [2]

b)
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0.$$
 [3]

5. Solve the differential equation :
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x^2 e^{3x}$$
. [5]

6. Suppose
$$A = x^2 z^2 \hat{i} - 2y^2 z^2 \hat{j} + xy^2 z \hat{k}$$
. Find $\nabla \times A$ (or curl A) at the point P(1,-1,1). [5]

Answer any one question from <u>Question Nos. 7 & 8</u> :

7. Test for convergence :

a)
$$\int_{0}^{1} \frac{dx}{(1-x)^{2/3}}$$
. b) $\int_{2}^{\infty} \frac{dx}{\sqrt{x^{2}}}$

8. Test for convergence :

a)
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}}$$
. b) $\int_{a}^{\infty} \frac{dx}{x\sqrt{1+x^{2}}}$ $(a > 0)$.

[2.5+2.5]

[2.5+2.5]

[1×5]

[2×5]